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Integrability of a t− J model with impurities
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† Department of Mathematics, University of Queensland, Queensland, 4072, Australia
‡ Instituto de F́ısica da UFRGS, Av. Bento Gon¸calves 9500, Porto Alegre, RS, Brazil

Received 4 August 1998

Abstract. A t − J model for correlated electrons with impurities is proposed. The impurities
are introduced in such a way that integrability of the model in one dimension is not violated. The
algebraic Bethe ansatz solution of the model is also given and it is shown that the Bethe states are
highest weight states with respect to the supersymmetry algebragl(2|1).

1. Introduction

The quantum inverse scattering method (QISM) has lead to many new results in the study of
integrable and exactly solvable systems. Amongst these is the fact that thet − J model for
correlated electrons is integrable in one dimension at the supersymmetric pointJ = 2t with
the supersymmetry algebra given by the Lie superalgebragl(2|1). This was made apparent in
the works [1, 2] where it was shown that the Hamiltonian could be derived from a solution of
the Yang–Baxter equation. Also, solutions of the model were found by means of the algebraic
Bethe ansatz.

One attractive aspect of the quantum inverse scattering method is that one is allowed to
incorporate impurities into the system without violating integrability. In this context, several
versions of the Heisenberg chain with impurities have been investigated [3–5]. For the specific
case of thet − J model this idea was first adopted by Bares [6], whereby the impurities
were introduced into the model by way of inhomogeneities in the transfer matrix of the
system. Another possibility was explored by Bedürftig et al [7] with impurities given by
changing the representation of thegl(2|1) generators at some lattice sites from the fundamental
three-dimensional representation to the one-parameter family of typical four-dimensional
representations which were introduced in [8] to derive the supersymmetricU model.

Here we wish to propose a third method for introducing integrable impurities into thet−J
model. This is achieved by replacing some lattice sites with thedualspace of the fundamental
three-dimensional representation. A significant point here is that only recently have new Bethe
ansatz methods been proposed in order to solve such a system because of the lack of a suitable
(unique) reference state. Rather, one is forced to work with a subspace of reference states.
This approach has been developed in the works of Abad and Rı́os [9, 10] and has already been
adopted in [11] to find a Bethe ansatz solution of the supersymmetricU model starting from
a ferromagnetic space of states.
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The Hamiltonian of thist − J model with impurities reads

H =
L∑
i=1

hi,i+1 +
∑
i∈I

2

λi − 2
hi,i+1Qi − 2

λi
Qihi,i+1 (1)

where

hi,i+1 = −
∑
σ

(c
†
i,σ ci+1,σ + c†i+1,σ ci,σ )(1− ni,−σ )(1− ni+1,−σ )

+2
(
Si · Si+1− 1

4nini+1
)

+ ni + ni+1− 1

Qi =
∑
σ

σ (c
†
i,σ cσ − c†σ ci,σ )(1− ni,−σ )n−σ

+S+
i S
− + S−i S

+ + ni+n− + ni−n+ − n + 1

and periodic boundary conditions are imposed. Abovec(†)i± are spin-up or spin-down
annihilation (creation) operators, theSi spin matrices, theni occupation numbers of electrons
at lattice sitei. Theλi are arbitrary complex parameters andI is simply an index set with
elements in the range 1, 2, . . . , L. We make the assumption that ifi ∈ I theni ± 1 /∈ I , since
otherwise extra terms are needed in the Hamiltonian for integrability. The operators without
site labels in the expression forQi act on the impurity space coupled to the sitei. Note,
however, that the interactions involving the impurity sites are three site interactions involving
the sitesi andi + 1 as well as the impurity. The local space of states for an impurity site has
the basis

|↑〉 , |↓〉 , |↑↓〉
in contrast to the local spaces for the other sites which have bases

|↑〉 , |↓〉 , |0〉
as is the case for a puret − J model. The reason for this choice is so that the Hamiltonian
conserves magnetization and particle number. Finally, we mention that the first term in
equation (1) is the Hamiltonian for the puret − J model. We can recover this model from
equation (1) by taking the limitλi →∞ for eachi ∈ I .

In this paper we derive the Hamiltonian equation (1) by means of the QISM which
guarantees integrability. We will also find solutions to the model using the algebraic Bethe
ansatz. Finally, we also show that the Bethe states which are obtained by this procedure are,
in fact, highest weight states with respect to the underlying supersymmetry algebragl(2|1).

2. Derivation of the Hamiltonian

Recall that the Lie superalgebragl(m|n) has generators{Eij }m+n
i,j=1 satisfying the commutation

relations

[Eij , E
k
l ] = δkjEil − (−1)([i]+[j ])([k]+[ l])δil E

k
j (2)

where theZ2-grading on the indices is determined by

[i] = 0 for 16 i 6 m
[i] = 1 for m < i 6 m + n.

This induces aZ2-grading on thegl(m|n) generators through[
Eij
] = [i] + [j ] (mod 2).
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The vector moduleV has basis{vi}m+n
i=1 with action defined by

Eijv
k = δkj vi . (3)

Associated with this space there is a solutionR(u) ∈ End(V ⊗V ) of the Yang–Baxter equation

R12(u− v)R13(u)R23(v) = R23(v) R13(u)R12(u− v) (4)

on the spaceV ⊗ V ⊗ V , which is given by

R(u) = I ⊗ I − 2

u

∑
i,j

eij ⊗ eji (−1)[j ] . (5)

Above, the matriceseij have elements given by(eij )kl = δikδjl . We remark that equation (4) is
acting on a supersymmetric space so the multiplication of tensor products is governed by the
relation

(a ⊗ b)(c ⊗ d) = (−1)[b][c]ac ⊗ bd (6)

for homogeneous operatorsb, c.
The solution given by equation (5) allows us to construct a universalL-operator which

reads

L(u) = I ⊗ I − 2

u

∑
i,j

eij ⊗ Eji (−1)[j ] . (7)

This operator gives us a solution of the Yang–Baxter equation of the form

R12(u− v)L13(u) L23(v) = L23(v) L13(u)R12(u− v)
on the spaceV ⊗ V ⊗ gl(m|n), which follows from the commutation relations equation (2).
The dual representation to equation (3) acts on the moduleV ∗ with basis{vi}m+n

i=1 and the action
is given by

Eijvk = −(−1)[i]+[i][j ]δikvj . (8)

By taking this representation in the expression equation (7) we obtain the followingR-matrix:

R∗(u) = I ⊗ I +
2

u

∑
i,j

eij ⊗ eij (−1)[i][j ] (9)

giving the solution

R12(u− v)R∗13(u)R
∗
23(v) = R∗23(v) R

∗
13(u)R12(u− v) (10)

onV ⊗ V ⊗ V ∗.
We wish to construct an impurity model with generic quantum spaces represented byV

and the impurity spaces byV ∗ for the case when the supersymmetry algebra isgl(2|1). To
this end take some index setI = {p1, p2, . . . , pl}, 16 pi 6 L and define

W =
L⊗
i=1

Wi

where
Wi = V if i /∈ I
Wi = V ⊗ V ∗ if i ∈ I. (11)

In other words, for eachi ∈ I we are coupling an impurity into the lattice which will be
situated between the sitesi andi + 1.

Next we define the monodromy matrix

T (u, {λ}) = R01(u)R02(u) . . . R0L(u)
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where we have

R0i (u) = R0i (u) for i /∈ I
R0i (u) = R0i ′(u)R

∗
0i ′′(u− λi) for i ∈ I.

Above, the indicesi ′ and i ′′ refer to the two spaces inWi (cf equation (11)) and theλi are
arbitrary complex parameters. A consequence of equations (4) and (10) is that the monodromy
matrix satisfies the intertwining relation

R12(u− v) T13(u) T23(v) = T23(v) T13(u)R12(u− v) (12)

acting on the spaceV ⊗ V ⊗W . The transfer matrix is defined by

τ(u) = tr0 σ0T (u) (13)

where the matrixσ has entries

σ ij = (−1)[i][j ]δij

from which the Hamiltonian is obtained through

H = −2
d

du
ln(uLτ(u))

∣∣∣∣
u=0

. (14)

In this derivation we have used the property

QiPi,i+1Qi = Qi

which follows from the fact thatQ projects onto a one-dimensional space spanned by the
vector

v1⊗ v1 + v2⊗ v2 + v3⊗ v3.

Above,P is theZ2-graded permutation operator defined by

P(x ⊗ y) = (−1)[x][y]y ⊗ x
for any homogeneous vectorsx, y and extends to inhomogeneous vectors linearly. This
simplifies the calculations and is one of the reasons why this model is much simpler than other
impurity chains. From equation (12) we conclude by the usual argument that the transfer matrix
provides a set of abelian symmetries for the model and hence the Hamiltonian is integrable. In
the next section we will solve the model by the algebraic Bethe ansatz approach. The explicit
form of the Hamiltonian equation (1) is given by making the following identification between
the basis elements ofV , V ∗ and the electronic states:

v1 = |↑〉 v1 = |↓〉
v2 = |↓〉 v2 = |↑〉
v3 = |0〉 v3 = |↑↓〉.

3. Algebraic Bethe ansatz solution

By a suitable redefinition of the matrix elements, the solutions (5) and (9) may be written in
terms of operators which satisfy the Yang–Baxter equations (4) and (10) withoutZ2-grading
(see e.g. [12]). These operators read

R(u) =
∑
i,j

eii ⊗ ejj (−1)[i][j ] − 2

u
eij ⊗ eji

R∗(u) =
∑
i,j

eii ⊗ ejj (−1)[i][j ] +
2

u
eij ⊗ eij (−1)[i]+[j ]
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and hereafter we will use these forms. In the following we will also need theR-matrices

r(u) =
3∑

i,j=2

(−1)[i][j ]eii ⊗ ejj −
2

u
eij ⊗ eji

r∗(u) =
3∑

i,j=2

(−1)[i][j ]eii ⊗ ejj +
2

u
eij ⊗ eij (−1)[i]+[j ]

which belong to agl(1|1)-invariant (six-vertex) system. From these matrices we define the
monodromy matrices

t (v, {u}) = r01(v − u1) r02(v − u2) . . . r0N(v − uN)
t∗(v, {λ}) = r∗01(v − λ1) r

∗
02(v − λ2) . . . r

∗
0l(v − λl).

First we construct the Yangian algebra which has elements{Y ij (u)}m+n
i,j=1. Relations

amongst these elements are governed by the constraint

R12(u− v) Y13(u) Y23(v) = Y23(v) Y13(u)R12(u− v) (15)

where

Y (u) =
∑
i,j

eij ⊗ Y ji (u).

By comparison with equation (12) we see that the monodromy matrix provides a representation
of this algebra acting on the moduleW by the mapping

π(Y ij (u))
k
l = (−1)([i][ l]+[j ][ l]+[i][k])T ikj l (u). (16)

Moreover, the transfer matrix is expressible in terms of this representation by

τ(u) =
3∑
i=1

(−1)[i]+[i][k]π(Y ii (u))
k
l .

The phase factors present above are required since the Yangian algebra is defined with a
non-gradedR-matrix. In the following we will omit the symbolπ for ease of notation.

For a given{α} = (α1, α2, . . . , αl), αi = 2, 3 we define the vectorv{α} ∈ W by

v{α} =
L⊗
i=1

wi

where

wi = v1 for i /∈ I
wi = v1⊗ vαj for i = pj ∈ I.

Now setX = span{v{α}}. It is important to observe that the spaceX is closed under the action
of the elementsY ij (u), i, j = 2, 3 which generate a sub-Yangian. We may, in fact, write

Y ij (u) v
{α} = t∗i{α}j{α′}(u, {λ}) v{α

′}

which follows from the fact that theY ij (u) (i, j = 2, 3) act trivially on the vectorv1 in the
sense

Y 2
2 (u) v

1 = Y 3
3 (u) v

1 = v1

Y 2
3 (u) v

1 = Y 3
2 (u) v

1 = 0.

Setting

S{β}({u}) = Yβ1
1 (u1) Y

β2
1 (u2) . . . Y

βN
1 (uN) βi = 2, 3
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we look for a set of eigenstates of the transfer matrix of the form

8j =
∑
{β,α}

S{β}({u}) v{α}F j{β,α} (17)

where theF j{β,α} are undetermined coefficients. We appeal to the algebraic equations given by
equation (15) to determine the constraints on the variablesui needed to force equation (17) to
be an eigenstate. Although many relations occur as a result of equation (15) only the following
are required:

Y 1
1 (v) Y

β

1 (u) = a(u− v) Y β1 (u) Y 1
1 (v)− b(u− v) Y β1 (v) Y 1

1 (u) (18)

Y γ
′

γ (v) Y
α
1 (u) = Yα

′
1 (u) Y

γ ′′
γ (v) r

γ ′α
γ ′′α′(v − u)− b(v − u) Y γ

′
1 (v) Y

α
γ (u) (19)

a(v − u) Y α1 (v) Y β1 (u) = Yβ
′

1 (u) Y
α′
1 (v) r

βα

β ′α′(v − u) (20)

with a(u) = 1− 2/u andb(u) = −2/u. All of the indices in equations (18)–(20) assume
only the values 2 and 3. Using equation (18) two types of term arise whenY 1

1 is commuted
throughYα1 . In the first typeY 1

1 andYα1 preserve their arguments and in the second type their
arguments are exchanged. The first type of terms are calledwanted termsbecause they will
give a vector proportional to8j , and the second type areunwanted terms(u.t.). We find that

Y 1
1 (v)8

j = a(v)L
N∏
i=1

a(ui − v)8j + u.t. (21)

Similarly, for i = 2, 3 we have from equation (19) (no sum oni)

Y ii (v)8
j = S{β ′}({u}) Y ik (v) tk{β}i{β ′}(v, {u}) v{α}F j{β,α} + u.t.

= S{β ′}({u}) tk{β}i{β ′}(v, {u}) t∗i{α}k{α′}(v, {λ}) v{α
′}F j{β,α} + u.t.

= S{β ′}({u}) t i{β,α}i{β ′,α′}(v, {u, λ}) v{α
′}F j{β,α} + u.t.

where

t
i{β,α}
i{β ′,α′}(v, {u, λ}) = tk{β}i{β ′}(v, {u}) t∗i{α}k{α′}(v, {λ}).

The contribution to the eigenvalues of the transfer matrix is

Y 2
2 (v)8

j + (−1)1+[j ] Y 3
3 (v)8

j =
3∑
i=2

(−1)[i]+[i][j ] t
i{β,α}
i{β ′,α′}

×(v, {u, λ})S{β ′}({u}) v{α′}F j{β,α} + u.t. (22)

At this point we need to perform a second-level, ornestedBethe ansatz procedure to diagonalize
the matrix

τ1(v)
{β,α}
{β ′,α′} =

3∑
i=2

(−1)[i]+[i][{β,α}] t i{β,α}i{β ′,α′}(v, {u, λ})

where we have used the fact thatF
j

{β,α} = 0 unless [j ] = [{β, α}]. The above matrix is simply
the transfer matrix for agl(1|1)-invariant system acting in the tensor product representation
of N copies of the vector representation with inhomogeneities{u} and l copies of the dual
representation with inhomogeneities{λ}.

To diagonalize this matrix we construct the Yangian generated by

y(u) =
3∑

i,j=2

eij ⊗ yji (u)
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subject to the constraint

r12(u− v) y13(u) y23(v) = y23(v) y13(u) r12(u− v). (23)

From the above set of relations we will need the following:

y2
2(v) y

3
2(u) = a(u− v) y3

2(u) y
2
2(v)− b(u− v) y3

2(v) y
2
2(u) (24)

y3
3(v) y

3
2(u) = −a(u− v) y3

2(u) y
3
3(v)− b(v − u) y3

2(v) y
3
3(u) (25)

y3
2(v) y

3
2(u) =

−a(u− v)
a(v − u) y

3
2(u) y

3
2(v). (26)

Proceeding similarly to before, we look for eigenstates of the form

φ = y3
2(γ1) y

3
2(γ2) . . . y

3
2(γM)w

with the vectorw given by

w = S{2}({u}) v{3}.
Using (24) and (25) it follows that

τ1(v) φ = 31(v) φ + u.t.

with

31(v) =
N∏
i=1

a(v − ui)
M∏
k=1

a(γk − v)−
l∏

j=1

a(v − λj )
M∏
k=1

a(γk − v).

The unwanted terms cancel provided the parametersγk satisfy the Bethe ansatz
equations (BAE)

N∏
i=1

a(γk − ui) =
l∏

j=1

a(γk − λj ) k = 1, 2, . . . ,M. (27)

Combining this result with equation (21) we obtain for the eigenvalues of the transfer matrix
equation (13)

3(v) = a(v)L
N∏
i=1

a(ui − v) +31(v). (28)

Cancellation of the unwanted terms in (21) and (22) leads to a second set of BAE which are

a(uh)
L

N∏
i=1

a(ui − uh)
a(uh − ui) = −

M∏
k=1

a(γk − uh) h = 1, 2, . . . , N. (29)

We will not give the details proving the cancellation of the unwanted terms but remark that the
calculation is analogous to that given in [2] for the puret − J chain.

Making a change of variableu→ iu + 1, γ → iγ + 2, λ→ iλ + 1 the BAE read

−
(
uh + i

uh − i

)L
=

N∏
i=1

uh − ui + 2i

uh − ui − 2i

M∏
k=1

uh − γk − i

uh − γk + i
h = 1, . . . , N (30)

N∏
i=1

γk − ui + i

γk − ui − i
=

l∏
j=1

γk − λj + i

γk − λj − i
k = 1, . . . ,M. (31)

In the absence of impurities (limitl → 0) we recover the form of the BAE first derived
by Sutherland [13] and later by Sarkar [14] for the usualt − J model. Adopting the string



154 J Links and A Foerster

conjecture, or more specifically assuming that the solutionsui are real or appear as complex
conjugate pairs and theλj are real, we find string solutions

unαβ = unα + i(n + 1− 2β) α = 1, 2, . . . , Nn β = 1, 2, . . . , n n = 1, 2, . . .

and theγk are real. The number ofn-stringsNn satisfy the relation

N =
∑
n

nNn.

As was shown in the papers [1, 2] two other forms of the Bethe ansatz exist which are
obtained by choosing a different grading for the indices of thegl(2|1) generators. Recall that
the above calculations were performed with the choice

[1] = [2] = 0 [3] = 1.

Choosing

[1] = 1 [2] = [3] = 0

yields the eigenvalue expression

3(v) = −a(−v)L
N∏
i=1

a(v − ui) +
M∏
k=1

a(v − γk)
l∏

j=1

a(λj − v) +
N∏
i=1

a(v − ui)
M∏
k=1

a(γk − v)

subject to the BAE

a(−ui)L =
M∏
k=1

a(γk − ui) i = 1, 2, . . . , N

M∏
k=1

a(γh − γk)
a(γk − γh) = −

N∏
i=1

a(γh − ui)
l∏

j=1

1

a(λj − γh) h = 1, 2, . . . ,M.

In the limit l → 0 we recover Lai’s form of the BAE [15] (see also [16]). Alternatively,
choosing

[1] = [3] = 0 [2] = 1

yields the eigenvalue expression

3(v) = a(v)L
N∏
i=1

a(ui − v) +
M∏
k=1

a(v − γk)
l∏

j=1

a(λj − v)−
N∏
i=1

a(ui − v)
M∏
k=1

a(v − γk)

with the BAE

a(ui)
L =

M∏
k=1

a(ui − γk) i = 1, 2, . . . , N,

N∏
i=1

a(ui − γk) =
l∏

j=1

a(λj − γk) k = 1, 2, . . . ,M.

Finally, from the definition of the Hamiltonian equation (14) we see that the energies are
given by

E = −2
d

dv
ln
(
vL3(v)

)∣∣∣∣
v=0

.

Using the eigenvalue expression equation (28) we obtain

E = L− 4
N∑
i=1

1

1 +u2
i

where theui are solutions to equations (30) and (31).
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4. Highest weight property

Next we wish to show that the eigenstates constructed in the previous section are, in fact,
highest weight states with respect to the underlying supersymmetry algebragl(2|1). The
highest weight property of the Bethe states has been proved for many models, such as the
Heisenberg chain [17] and its generalized version [18], the Kondo model [19], the usualt − J
model [2], the Hubbard chain [20–22] and itsgl(2|2) extension [23]. However, as far as we
are aware it has never been shown before in the case where a subspace of reference states has
been used in the Bethe ansatz procedure.

Let us begin by considering

E2
38

j =
∑
{β,α}

E2
3 S
{β}({u}) v{α}F j{β,α}.

By means of the nesting procedure we know that the coefficientsF
j

{β,α} are such that we have
the following identification of states:

S{β}({u}) v{α}F j{β,α} = y3
2(γ1) y

3
2(γ2) . . . y

3
2(γM)w

for a suitable solution of the BAE. By comparing equations (7), (23) and (16) it is possible
to determine algebraic relations between the elements of the Yangian algebra and the
supersymmetry algebra. For our purposes we need the following:

[E2
3, y

3
2(u)]

α
β = −y2

2(u)
α
β + y3

3(u)
α
β (−1)[α] . (32)

Noting thatE2
3w = 0 it is evident that we may write

E2
3 y

3
2(γ1) . . . y

3
2(γM)w =

M∑
h=1

xhXh

with

Xh = y3
2(γ1) . . . y

3
2(γh−1) y

3
2(γh+1) . . . y

3
2(γM)w

and thexh some yet to be determined coefficients. To findxh we write

y3
2(γ1) . . . y

3
2(γM)w =

h−1∏
j=1

−a(γh − γj )
a(γj − γh) y

3
2(γh)Xh

where we have used equation (26). Now by using the relations (24), (25) and (32) and looking
only for those terms which give a vector proportional toXh we find that

xh =
h−1∏
j=1

−a(γh − γj )
a(γj − γh)

(
l∏

j=1

a(γh − λj )
M∏
k 6=h

a(γk − γh)−
N∏
i=1

a(γh − ui)
M∏
k 6=h

a(γk − γh)
)

which vanishes because of equation (27). Thus we see that

E2
38

j = 0.

Next we consider the action ofE1
2 on8j . Using equations (7), (15) and (16) we find the

commutation relation

[E1
2, Y

α
1 (u)] = δα2 Y 1

1 (u)− Yα2 (u). (33)

As before, sinceE1
2v
{α} = 0 we can write the general expression

E1
28

j =
∑
h,β

zh,βZh,β
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where

Zh,β = S{β−h } ({u−h )}) S{β
+
h }({u+

h)}) v{α}F j{β,α}
and for any vector{w} we have

{w−h } = (w1, w2, . . . , wh−1) {w+
h} = (wh+1, . . . , wN).

To calculatezh,β we begin by writing

8j = S{β−h }({u−h }) Y βh1 (uh) S
{β+
h }({u+

h}) v{α}F j{β,α}

=
h−1∏
i=1

a(ui − uh)−1t
βh{β−h }
γ {γ−h } (−uh, {−u

−
h }) Y γ1 (uh) S{γ

−
h }({u−h }) S{β

+
h }({u+

h}) v{α}F j{β,α}

where we have used the relation equation (20). Now applying equation (33) and using the
relations (18) and (19) to determine the terms which give a vector proportional toZh,β we find
that

zh,β = δβh2

(
a(uh)

L
N∏
i 6=h
a(ui − uh)−

N∏
i 6=h
a(uh − ui)

M∏
k=1

a(γk − uh)
)

which vanishes as a result of equation (29). We then conclude that

E1
28

j = 0

which completes the proof that the Bethe states aregl(2|1) highest weight states. We observe
that this property can also be proved for the other two choices of gradings in a similar way.

5. Conclusions

In this paper we have introduced a new integrable version of thet − J model with impurities.
The model was solved through an algebraic Bethe ansatz method and three different forms
of the BAE were derived. A proof of the highest weight property of the Bethe vectors with
respect to thegl(2|1) superalgebra was also presented. We believe that this is the first instance
of the highest weight property being shown for a Bethe ansatz approach where there is no
unique reference state.

After completing this work we became aware of the preprint [24] where a similar model
has been studied for an alternating chain. It is worth noting that the explicit Hamiltonian that
we have presented is significantly simpler than that of [24] because we make the restriction
that impurities are not coupled to consecutive sites in the chain. We also received the preprint
[25] where the braid-monoid algebra was used to analyse such types of impurity models.
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